永遠の美の追究を通した教育ミッション

防衛大学校 システム工学群 航空宇宙工学科 学部4年 瀬川昌学 小山将弘 宮内嶺成 村松泰輔 高橋岬佑 木島玲

1.序 論

1.1. 背景

近年、プリザーブドフラワーは生花のような 生々しさを持つ枯れない加工花として注目を集 めているが、実際は大気中の湿気や酸素、紫外線 等により色落ち等劣化するため、永久的であると は言えない。また、花びらが少なく散り易い花や 花びらの薄い花、花弁が大きすぎる花は製造過程 で花の形を保てなくなるため、地上での製造は困 難とされている。我々は、プリザーブドフラワー の作成を宇宙空間で行い、拡散接合を利用したパ ッキングにより保存環境を整えることで、どのよ うな花も永久的に保存可能なプリザーブドフラ ワーにすることができるのではないかと考えた。

1.2. 目的

ISS「きぼう」日本実験棟及び中型曝露実験ア ダプタ(i-SEEP)[1]を用いた宇宙空間でのプリ ザーブドフラワーの作成、拡散結合を用いたパッ キングによって、重力の影響により地上での作成 が困難な花も含めどのような花でも永遠に枯れ ることのないプリザーブドフラワーへと加工す る。その様子を動画で撮影して配信及び教育活動 に用い、芸術表現の拡大、日本の技術力、未来を 見据えた人類の可能性を全世界に示す。

また、作成したプリザーブドフラワーのうち、 宇宙飛行士の気分転換のための鑑賞用として ISS に飾るもの以外は地上へと輸送し、保存環境や花 の状態の観察を行い、今後の改善や拡散結合やパ ッキングの技術力向上を目指す。

1.3. 意義

現在、JAXA では「きぼう」日本実験棟を利用

した教育的な活動や文化・人文的な試みによって、 「地球人育成」「人類未来の開拓」「宇宙利用に よる新たな価値の創出」を目指している[2]。本ミ ッションはこの活動に最適であると考える。

また、1 輪のバラを用いたミッションを行うこ とで、「美女と野獣」の実写映画化や 2020 年の 東京ディズニーランドの「美女と野獣」エリアの 新設などの話題性もあり、2020 年に行われる東京 オリンピックと合わせて日本は注目を集め、対外 的なアピールにも繋がることも期待できる。

2. ミッションの概要

宇宙空間でのプリザーブドフラワーの作成、拡 散結合を用いたパッキング及びその撮影に用い る船外実験装置の概略を図1に示す。

図1 船外実験装置の概略図

この船外実験装置を用いたミッションの流れ を以下の 1)~7)に示す。

 こうのとり7号により必要なコンポーネント と生花を ISS へ打ち上げる。

2) ISS「きぼう」日本実験棟において、クルーに より花を密閉容器内で溶液に浸けて脱色、染色し たのちに溶液のふき取りを実施する。この際、溶 液の飛散による他の装置等の汚損が起こらない ように注意する。

3) 染色された花を容器の下部に設置し、船外実 験装置内に収容する。

4) 船外実験装置を、JEM エアロックを介して宇宙曝露空間に移設し、ロボットアームにより i-SEEP に取り付け、宇宙曝露空間で花の乾燥を実施する。

5) 完全乾燥後、コイラブラルマストを回転させ ながら拡張していき、容器の上部を容器の下部に 回転・加圧しながら接地させ、拡散接合により永 久結合させる。

 6) 容器を回収し、宇宙船で地上へ輸送する。また、宇宙飛行士の気分転換のための鑑賞用として ISS にも設置する。

7) 地上に輸送した後、保存環境や花の状態の観察を行い、今後の改善や拡散結合、パッキングの 技術力向上を目指す。

3. 宇宙空間で行う意義

3.1. 高真空である利点

プリザーブドフラワーの劣化原因として湿気 の影響が挙げられる。湿気にふれることは変色、 色落ちに繋がる。そこで真空中で乾燥させればプ リザーブドフラワーの完成に良い影響をもたら すと考え、自然乾燥させた花と真空槽(真空度は 0.1 気圧)で乾燥させた花の比較実験を行った。 プリザーブドフラワーの乾燥後の経過時間と質 量の関係を調べたところ図2のようになった。

図2 経過時間と花の質量の増加量の関係

図2から分かる通り、自然乾燥させたプリザー ブドフラワーは総じて真空槽で乾燥させたプリ ザーブドフラワーよりも時間の経過による重さ の増加量が大きくなっている。これは、高真空で 乾燥させる方が花の内部の水分が排出され溶液 がよく浸透するのに対し、自然乾燥させた場合に は溶液が浸透していない部分が残り、そこに大気 中の水分が入り込むことによるものである。しか し、いずれにしても大気中の水分が吸収されるこ とが分かる。これを防止するには、乾燥からパッ キング完了まで空気に触れないことが求められ る。地上における真空槽を用いた乾燥の場合、乾 燥後に一度取り出してパッキングするまでの間 に大気に曝されるため、より良いプリザーブドフ ラワーの作成には、宇宙空間での作成が望ましい。

また、真空槽で乾燥させたプリザーブドフラワ ーと自然乾燥させたプリザーブドフラワーを約 4ヶ月間、湿度変化の大きい環境(最高湿度8 5%)に放置して比較した様子を図3に示す。

図 3 比較の様子 左:真空槽で乾燥させたプリザーブドフラワー 右:自然乾燥させたプリザーブドフラワー

真空槽で乾燥させたプリザーブドフラワーは 白さを保っているが、自然乾燥させたプリザーブ ドフラワーは茶色に変色し劣化している。

以上の2点を踏まえると、高真空であるとより 良いプリザーブドフラワーを作成することがで き、また、乾燥後の状態をそのまま維持するため にも宇宙空間での作成、パッキングが必要である。

3.2. 微小重力である利点

花びらが少なく散り易い花や花びらの薄い花、

花弁が大きすぎる花は製造過程で花の形を保て なくなるため、地上での製造は困難とされている。 実際にデルフィニウムを用いた地上実験を行っ てみたが、乾燥の段階で重力により花弁がつぶれ てしまい、花の形が保てなくなった(図4)。

図4 デルフィニウムのプリザーブドフラワー

しかし、ISS 内は微小重力環境であり、花びら にはほとんど重力が働かないので、花びらの形を 保つことができると考えられる。今回のミッショ ンでは微小重力空間を利用し、脱色から染色及び 乾燥まで実施することにより、プリザーブドフラ ワーに加工しにくい花も使用できると考える。ま た、地上での製造では溶液の色素成分が沈殿して しまうため、色のムラを失くすためには撹拌が必 要になるが、微小重力下では沈殿しないため、撹 拌による花びらの形を壊す要因を失くすことが できる。

4. ミッション機器の詳細

中型曝露実験アダプタ(i-SEEP)では船外実験 プラットフォーム結合機構 EFBM[3]を結合する と同時に電力系、通信制御系、熱制御系が接続さ れ、船内実験室から船外実験プラットフォームへ の電力供給や各種データのやり取りなどが可能 になる。

4.1. 船外実験装置

機器を充分に搭載でき、実験の様子を綺麗に撮 影できるように船外実験装置は搭載可能最大値 である360×500×390mmとする。また、ISS が 飛行する軌道周辺は、一般的に原子状酸素の多い 環境であり、完全に曝露した状態では、真空容器 の金属部は確実に酸化されて酸化膜が発生する ので、拡散接合に大きな影響を与える。また、花 が酸化されるという影響も考えられる。そこで、 ISS は軌道速度が大きいため原子状酸素は進行方 向前面に衝突するため、船外実験装置のカバーを 設け、原子状酸素の流入を防ぐ。

4.2. カメラ

投光器を用いることで船外実験装置内での撮 影も可能な衛星搭載モニタカメラを使用し、プリ ザーブドフラワーの作成やパッキングの様子を 動画で撮影する。

4.3. コイラブルマスト

3本の縦部材をコイル状に折り畳んで、収納し た伸張性のあるコイラブルマストを容器に取り 付けて設置する。コイラブルマストが伸展する際 の回転運動を利用して容器の上部と下部をこす り合わせ、金属表面の酸化被膜を取り除くことで、 金属の拡散を促進し拡散接合する。

4.4. 容器

容器の上部(UV カットガラス)にはあらかじ め拡散接合のためにアルミニウムを中間体とし て接着しておく。下部はアルミニウムで作成する。 下部は2種類の機構を想定しており、スポンジに よって保持する容器を容器α、機械的に保持する 容器を容器βとした(図5)。

容器 a は Creative Floral Life GZ3 アレンジフ

オームをφ20 mm高さ 20 mmに加工して設置した。 このスポンジはフラワーアレンジメントや造花 の装飾に使用されるものであり、花への影響が少 なく、複数の花を装飾するアレンジができるとい う利点がある。

容器βは図6のように3つの小さな爪で鉛筆 削りのように保持する機構であり、1輪の花を確 実に保持することができる。

図6 容器 βの下部の機構(動作の様子)

また、パッキング後は図7のようになる。

図7 容器の完成図 左:容器α 右:容器β

4.5. 気圧計・湿度計

気圧計と湿度計を容器の下部に取り付け、ケー ブルを通した後にシーリングを実施する。これに より、乾燥中やパッキング後、地上に持ち帰った 後の気圧や湿度を知ることで、容器内の状態と花 の状態を比較的に把握でき、今後の技術力の向上 や改善が期待できる。

4.6. コールドプレート

中型曝露実験アダプタ(i-SEEP)の排熱サービ スとして利用できるコールドプレートを使用す る。フロリナートと呼ばれる冷媒を循環させコー ルドプレートを冷却することにより、熱伝導形態 で 200W まで排熱が可能である[4]。

4.7. センサー

温度センサーには K 型熱電対を用いて、低温環 境にも幅広く使用できるようにし、船外実験装置 内の温度管理に用いる。

着色したプリザーブドフラワーは生花や鉢花 と逆で紫外線に当たると変色や色褪せをするの で、紫外線センサーを取り付け、装置内部にまで 紫外線が届いてないことを確認する。

4.8. ヒーター

ミッション部は宇宙空間に曝されるので、実験 装置が凍結により不全状態に陥ることを防ぐた めに、ヒーター供給電力系統により人工衛星搭載 用ヒーターを運用して装置の内部環境の維持に 努める。

5. システム系

5.1. 拡散接合

拡散接合とは母材の接合面に圧力を加えるこ とにより密着させ、母材の融点以下の温度で原子 の拡散を利用して接合する方法である[5]。本ミッ ションにおける拡散接合の様子を図8に示す。

図8 拡散接合の過程

コイラブルマストの拡張に伴う回転・加圧によ り酸化膜やプリザーブドフラワーからの脱ガス 等の吸着層を除去し、金属面を露出させる。本ミ ッションでは、高真空下で酸化膜を取り除いた同 種金属面をコイラブルマストによって密着、加圧 して拡散接合を行う。この際、シリコン製のoリ ングを用いて容器を密閉する。

5.2. 熱制御

船外実験装置内は高真空であり対流はないの で、熱伝達は、熱伝導と熱放射による。

中型曝露実験アダプタ(i-SEEP)利用ハンドブ ックによると、フロリナートと呼ばれる冷媒を循 環させコールドプレートを冷却することにより、 熱伝導形態で200Wまで排熱が可能である。ま た、実験装置からの深宇宙への放熱も可能である。

以上のことから、実験装置の熱伝達は図9のよ うになる。

凶9 关款表值仍然伍连

まず、実験装置外壁の温度T_oは、以下の式で求めることができる。

$$T_O = \left(\frac{\alpha_s}{\varepsilon} \frac{E_s}{\sigma} \frac{A_s}{A}\right)^{\frac{1}{4}}$$

 α_{S} :太陽光吸収率

ε:放射率

$$E_{s}$$
:地球軌道の平均半径上における太陽からの
熱入射 $E_{s} = 1.353 \times 10^{3} \text{ W/m}^{2}$
 σ :ステファン-ボルツマンの定数 $\sigma =$

 5.67×10^{-8} W/($m^2 \cdot K^4$)

 $A_s: 熱入射のある面積$

ここで、様々な材料表面における太陽光吸収率 α_sと放射率εの関係は図10の通りである。

図10 材料表面のαsとεの関係[6]

コールドプレートによる排熱には限りがある ので、 T_o は目的温度に近い方が良いと考え、表 面材料を $\alpha_s = 0.3$ 、 $\epsilon = 0.8$ の白色ペイントとする。 また、図9のような構成を想定すると、熱入射の ある面積と放熱のある面積は等しいので、 $\frac{A_s}{A} = 1$ となる。

よって、

$$T_0 = \left(\frac{0.3}{0.8} \times \frac{1.353 \times 10^3}{5.67 \times 10^{-8}} \times 1\right)^{\frac{1}{4}} = 307.56 \, k$$

と求まる。

次に、実験装置内部の温度解析の方程式は、

$$q = \sigma \varepsilon F (T_0^4 - T_F^4) + q_{\#\#}$$

となる。

ここで、実験装置内の温度を実験に適温である 20℃に保ちたいので、 $T_F = 20 \circ C = 293 K$ とする。

実験装置の寸法は、360×500×390mm なの で、図9の熱伝達の場合、

F =
$$\frac{(\cos 0)^2 \times (0.5 \times 0.39)^2}{\pi \times (0.36)^2} = 0.093 m^2$$

である。

ここで、カメラ等の機器の発生熱量を見積もり

 $q_{\# H} = 20W$ とすると、以上より、

$$q = 5.67 \times 10^{-8} \times 0.8 \times 0.093$$
$$\times \left\{ (307.56)^{4} - (293)^{4} \right\} + 20$$
$$= 26.66 W$$

となる。表面材料を白色ペイントにすると、必要な排熱量は 200W 以下であるため、コールドプレートを用いた排熱を行うことで、温度の上昇を抑制でき適温に保つことができる。

6. 検討すべき事項

6.1. 容器の耐圧性

容器の中は真空となるため、地上に持ち帰った 際に、1気圧=1.013×10⁵N/m²の力がかかり座屈 する可能性と静的に壊れる可能性が考えられる。 よって、この容器に対して座屈解析と静解析を行 った(図11,12)。

図11 座屈解析の結果

座屈解析の結果(図11)より、設計した容器 は、7.143×10⁸ N/m²の圧力まで耐えられる。地 上の気圧は1気圧=1.013×10⁵ N/m²であり、真 空容器の耐圧はこれに比べ十分に大きいため、十 分なマージンがある。

また、1 気圧の圧力をかけた静解析の結果(図 12)より、この容器には最大5.79×10⁵ N/m²の 圧力がかかる。容器上部に使用するシリカガラス の破壊応力は4.9×10⁷ N/m²、容器下部のアルミ ニウムの耐力は4.95×10⁸ N/m²であり、十分な マージンがある。

6.2. 振動環境

打ち上げ時は生花であり、荷台にバンドで固定 することで振動の影響は小さいと考えた。花に直 接の衝撃を避けるように梱包を施すことで、破損 は避けることができる。

再突入時は容器に固定された状態のプリザー ブドフラワーである。そこで、再突入時の振動・ 衝撃にプリザーブドフラワーが耐えられるのか、 IMV社VS-2000加振試験装置を用いた正弦波振動、 ランダム振動による加振試験(縦・横2方向)を 行った。試験条件は表1の通りである。

表1 加振試験の試験条件

試験項目	概要
正弦波	加速度レベル 10G,
加振試験	12-100Hz, 4oct/min, 往復
	7.3Grms, 1分
ランダム	(20Hz: 0.01G ² /Hz; 20-50Hz:
加振試験	+3dB/oct; 50-800Hz: 0.04G ² /Hz;
	800-2000Hz: -3dB/oct;2000Hz:
	0.01G ² /Hz)

容器αに固定した場合、スポンジに茎を奥まで 挿し込んだ状態でしか花を保持することができ なかったが、その状態では正弦波振動、ランダム 振動ともにプリザーブドフラワーが容器から外 れることや、破損することはなく、再突入時の振 動・衝撃に耐えることができる。 容器βに固定した場合、茎を残した状態の時は 正弦波振動の低周波に耐えきれず、茎とがくの境 目が破断した(図13)。

以上より、容器 α 、 β ともに図14のように固 定に必要な最低限の茎のみを残して固定するこ とで、振動・衝撃に耐えることができる。

図13 茎が破断した時の様子

図14 振動・衝撃に耐え得る固定方法

7.結 論

宇宙空間でのプリザーブドフラワーの作成、拡 散接合によるパッキングの様子を動画で撮影し て配信及び教育活動に用い、芸術表現の拡大、日 本の技術力、未来を見据えた人類の可能性を全世 界に示すという目的で本ミッションを提案した。 他の手法として窒素充填や樹脂包埋による保 存が考えられたが、窒素充填においては接合雰囲 気として真空の方が適しており、樹脂包埋におい ては樹脂と化学反応を起こし花が変色する可能 性がある。また、どちらもシステム的な負担が増 えるため、本提案が有効であると言える。

そして、話題性もあるので注目が集まり、この 「永遠の美の追究を通した教育ミッション」は JAXAの目指す「地球人育成」「人類未来の開拓」 「宇宙利用による新たな価値の創出」に寄与でき ると考える。

8. 参考文献

- [1] 宇宙航空研究開発機構 広報・情報センター,
 "中型曝露実験アダプタ(i-SEEP),"
 ">
 [アクセス日:2017年6月15日].
- [2] 宇宙航空研究開発機構 広報・情報センター,
 "宇宙ステーション・きぼう 文化・人文社会
 科 学利用," 宇宙航空研究開発機構,
 ">http://iss.jaxa.jp/kiboexp/field/epo/pilot/.>

[アクセス日:2017年6月15日].

[3] 宇宙航空研究開発機構 広報・情報センター,
"「きぼう」日本実験棟 船外実験プラットフォーム," 宇宙航空研究開発機構,
http://iss.jaxa.jp/kibo/about/kibo/jef/.>

[アクセス日:2017年6月15日].

[4] 宇宙航空研究開発機構 有人宇宙技術センター『中型曝露実験アダプタ(i-SEEP)利用ハンドブック(JMX-2016226)』宇宙航空研究開発機構
[5]日本工業標準調査会, "日本工業規格の簡易閲覧," 日本工業標準調査会, http://kikakurui.com/z3/Z3001-1-2013-01.html
[アクセス日:2017年6月15日].

[6]小林繁夫(2001)『宇宙工学概論』丸善株式会 社